{-# OPTIONS --cubical-compatible --safe #-} open import Level open import Ordinals import HODBase import OD open import Relation.Nullary module BAlgebra {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O) (ho< : OD.ODAxiom-ho< O HODAxiom ) (L : HODBase.HOD O) (∋-p : (P : HODBase.HOD O) → OD._⊆_ O HODAxiom P L → (x : HODBase.HOD O) → Dec ( OD._∈_ O HODAxiom x P )) where open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Empty import OrdUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal import ODUtil open import logic open import nat open OrdUtil O open ODUtil O HODAxiom ho< open _∧_ open _∨_ open Bool open HODBase._==_ open HODBase.ODAxiom HODAxiom open OD O HODAxiom L\L=0 : (L \ L) =h= od∅ L\L=0 = record { eq→ = lem0 ; eq← = lem1 } where lem0 : {x : Ordinal} → odef (L \ L) x → odef od∅ x lem0 {x} ⟪ lx , ¬lx ⟫ = ⊥-elim (¬lx lx) lem1 : {x : Ordinal} → odef od∅ x → odef (L \ L) x lem1 {x} lt = ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) \-cong : (P R Q S : HOD) → P =h= R → Q =h= S → (P \ Q) =h= (R \ S) eq→ (\-cong P R Q S p=r q=s) {x} ⟪ px , npq ⟫ = ⟪ eq→ p=r px , (λ lt → npq (eq← q=s lt) ) ⟫ eq← (\-cong P R Q S p=r q=s ) {x} ⟪ rx , nrs ⟫ = ⟪ eq← p=r rx , (λ lt → nrs (eq→ q=s lt) ) ⟫ L\Lx=x : {x : HOD} → x ⊆ L → (L \ ( L \ x )) =h= x L\Lx=x {x} x⊆L = record { eq→ = lem03 ; eq← = lem04 } where lem03 : {z : Ordinal} → odef (L \ (L \ x)) z → odef x z lem03 {z} ⟪ Lz , Lxz ⟫ with ∋-p x x⊆L (* z) ... | yes y = subst (λ k → odef x k ) &iso y ... | no n = ⊥-elim ( Lxz ⟪ Lz , ( subst (λ k → ¬ odef x k ) &iso n ) ⟫ ) lem04 : {z : Ordinal} → odef x z → odef (L \ (L \ x)) z lem04 {z} xz with ∋-p L (λ x → x) (* z) ... | yes y = ⟪ subst (λ k → odef L k ) &iso y , ( λ p → proj2 p xz ) ⟫ ... | no n = ⊥-elim ( n (subst (λ k → odef L k ) (sym &iso) ( x⊆L xz) )) L\0=L : (L \ od∅) =h= L L\0=L = record { eq→ = lem05 ; eq← = lem06 } where lem05 : {x : Ordinal} → odef (L \ od∅) x → odef L x lem05 {x} ⟪ Lx , _ ⟫ = Lx lem06 : {x : Ordinal} → odef L x → odef (L \ od∅) x lem06 {x} Lx = ⟪ Lx , (λ lt → ¬x<0 lt) ⟫ ∨L\X : { X : HOD } → {x : Ordinal } → odef L x → odef X x ∨ odef (L \ X) x ∨L\X {X} {x} Lx with ∋-p (X ∩ L) (λ lt → proj2 lt ) (* x) ... | yes y = case1 ( subst (λ k → odef X k ) &iso (proj1 y) ) ... | no n = case2 ⟪ Lx , subst (λ k → ¬ odef X k) &iso (λ lt → ⊥-elim ( n ⟪ lt , subst (λ k → odef L k) (sym &iso) Lx ⟫ ) ) ⟫ \-⊆ : { A B : HOD } → A ⊆ L → ( A ⊆ B → ( L \ B ) ⊆ ( L \ A )) ∧ (( L \ B ) ⊆ ( L \ A ) → A ⊆ B ) \-⊆ {A} {B} A⊆L = ⟪ ( λ a<b {x} pbx → ⟪ proj1 pbx , (λ ax → proj2 pbx (a<b ax)) ⟫ ) , lem07 ⟫ where lem07 : (L \ B) ⊆ (L \ A) → A ⊆ B lem07 pba {x} ax with ∋-p (B ∩ L) proj2 (* x) ... | yes bx = subst (λ k → odef B k ) &iso (proj1 bx) ... | no ¬bx = ⊥-elim ( proj2 ( pba ⟪ A⊆L ax , (λ bx → ¬bx ⟪ d→∋ B bx , subst (λ k → odef L k) (sym &iso) ( A⊆L ax) ⟫) ⟫ ) ax ) RC\ : RCod (Power (Union L)) (λ z → L \ z ) RC\ = record { ≤COD = λ {x} lt z xz → lemm {x} lt z xz ; ψ-eq = λ {x} {y} → wdf {x} {y} } where lemm : {x : HOD} → (L \ x) ⊆ Power (Union L ) lemm {x} ⟪ Ly , nxy ⟫ z xz = record { owner = _ ; ao = Ly ; ox = xz } wdf : {x y : HOD} → x =h= y → (L \ x) =h= (L \ y) wdf {x} {y} x=y = record { eq→ = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq← x=y yp) ) ⟫ ; eq← = λ {p} lxp → ⟪ proj1 lxp , (λ yp → proj2 lxp (eq→ x=y yp) ) ⟫ } [a-b]∩b=0 : { A B : HOD } → ((A \ B) ∩ B) =h= od∅ [a-b]∩b=0 {A} {B} = record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) ; eq→ = λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) } U-F=∅→F⊆U : {F U : HOD} → U ⊆ L → ((x : Ordinal) → ¬ ( odef F x ∧ ( ¬ odef U x ))) → F ⊆ U U-F=∅→F⊆U {F} {U} U⊆L not = gt02 where gt02 : { x : Ordinal } → odef F x → odef U x gt02 {x} fx with ∋-p U U⊆L (* x) ... | yes y = subst (λ k → odef U k ) &iso y ... | no n = ⊥-elim ( not x ⟪ fx , subst (λ k → ¬ odef U k ) &iso n ⟫ ) ∪-Union : { A B : HOD } → Union (A , B) =h= ( A ∪ B ) ∪-Union {A} {B} = ( record { eq→ = lemma4 ; eq← = lemma2 } ) where lemma4 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x lemma4 {x} record { owner = owner ; ao = (case1 refl) ; ox = ox } = case1 (eq← (==-sym *iso) ox) lemma4 {x} record { owner = owner ; ao = (case2 refl) ; ox = ox } = case2 (eq← (==-sym *iso) ox) lemma2 : {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( union→ (A , B) (* x) A ⟪ case1 refl , d→∋ A A∋x ⟫ ) lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( union→ (A , B) (* x) B ⟪ case2 refl , d→∋ B B∋x ⟫ ) open import zf pred-in : (A B : HOD ) → ZPred HOD _∋_ _=h=_ (λ x → (A ∋ x) ∧ (B ∋ x)) pred-in A B = record { ψ-cong = wdf } where wdf : (x y : HOD) → x =h= y → ((A ∋ x) ∧ (B ∋ x)) ⇔ ((A ∋ y) ∧ (B ∋ y)) wdf = λ x y x=y → ⟪ (λ p → ⟪ subst (λ k → odef A k) (==→o≡ x=y) (proj1 p) , subst (λ k → odef B k) (==→o≡ x=y) (proj2 p) ⟫ ) , (λ p → ⟪ subst (λ k → odef A k) (sym (==→o≡ x=y)) (proj1 p) , subst (λ k → odef B k) (sym (==→o≡ x=y)) (proj2 p) ⟫ ) ⟫ ∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x )) (pred-in A B) =h= ( A ∩ B ) ∩-Select {A} {B} = record { eq→ = lemma1 ; eq← = lemma2 } where lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) (pred-in A B) ) x → odef (A ∩ B) x lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫ lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁)) (pred-in A B) ) x lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫ dist-ord : {p q r : HOD } → (p ∩ ( q ∪ r )) =h= ( ( p ∩ q ) ∪ ( p ∩ r )) dist-ord {p} {q} {r} = record { eq→ = lemma1 ; eq← = lemma2 } where lemma1 : {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x lemma1 {x} lt with proj2 lt lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫ lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫ lemma2 : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫ lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫ dist-ord2 : {p q r : HOD } → (p ∪ ( q ∩ r )) =h= ( ( p ∪ q ) ∩ ( p ∪ r )) dist-ord2 {p} {q} {r} = record { eq→ = lemma1 ; eq← = lemma2 } where lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x lemma1 {x} (case1 cp) = ⟪ case1 cp , case1 cp ⟫ lemma1 {x} (case2 cqr) = ⟪ case2 (proj1 cqr) , case2 (proj2 cqr) ⟫ lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x lemma2 {x} lt with proj1 lt | proj2 lt lemma2 {x} lt | case1 cp | _ = case1 cp lemma2 {x} lt | _ | case1 cp = case1 cp lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫ record PowerP (P : HOD) : Set (suc n) where constructor ⟦_,_⟧ field hod : HOD x⊆P : hod ⊆ P record IsBooleanAlgebra {n m : Level} ( L : Set n) ( _≈_ : L → L → Set m ) ( b1 : L ) ( b0 : L ) ( -_ : L → L ) ( _+_ : L → L → L ) ( _x_ : L → L → L ) : Set (n ⊔ m) where field +-assoc : {a b c : L } → (a + ( b + c )) ≈ ((a + b) + c) x-assoc : {a b c : L } → (a x ( b x c )) ≈ ((a x b) x c) +-sym : {a b : L } → (a + b) ≈ (b + a) x-sym : {a b : L } → (a x b) ≈ (b x a) +-aab : {a b : L } → (a + ( a x b )) ≈ a x-aab : {a b : L } → (a x ( a + b )) ≈ a +-dist : {a b c : L } → (a + ( b x c )) ≈ (( a + b ) x ( a + c )) x-dist : {a b c : L } → (a x ( b + c )) ≈ (( a x b ) + ( a x c )) a+0 : {a : L } → (a + b0) ≈ a ax1 : {a : L } → (a x b1) ≈ a a+-a1 : {a : L } → (a + ( - a )) ≈ b1 ax-a0 : {a : L } → (a x ( - a )) ≈ b0 record BooleanAlgebra {n m : Level} ( L : Set n) : Set (n ⊔ suc m) where field _≈_ : L → L → Set m b1 : L b0 : L -_ : L → L _+_ : L → L → L _x_ : L → L → L isBooleanAlgebra : IsBooleanAlgebra L _≈_ b1 b0 -_ _+_ _x_ HODBA : (P : HODBase.HOD O) (∋-p : (Q : HODBase.HOD O) → OD._⊆_ O HODAxiom Q P → ( x : HODBase.HOD O ) → Dec ( OD._∈_ O HODAxiom x Q )) → BooleanAlgebra (PowerP P) HODBA P ∋-p = record { _≈_ = λ x y → hod x =h= hod y ; b1 = ⟦ P , (λ x → x) ⟧ ; b0 = ⟦ od∅ , (λ x → ⊥-elim (¬x<0 x)) ⟧ ; -_ = λ x → ⟦ P \ hod x , proj1 ⟧ ; _+_ = λ x y → ⟦ hod x ∪ hod y , ba00 x y ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt)) ⟧ ; isBooleanAlgebra = record { +-assoc = λ {a} {b} {c} → record { eq→ = ba01 a b c ; eq← = ba02 a b c } ; x-assoc = λ {a} {b} {c} → record { eq→ = λ lt → ⟪ ⟪ proj1 lt , proj1 (proj2 lt) ⟫ , proj2 (proj2 lt) ⟫ ; eq← = λ lt → ⟪ proj1 (proj1 lt) , ⟪ proj2 (proj1 lt) , proj2 lt ⟫ ⟫ } ; +-sym = λ {a} {b} → record { eq→ = λ {x} lt → ba05 {hod a} {hod b} lt ; eq← = ba05 {hod b} {hod a} } ; x-sym = λ {a} {b} → record { eq→ = λ lt → ⟪ proj2 lt , proj1 lt ⟫ ; eq← = λ lt → ⟪ proj2 lt , proj1 lt ⟫ } ; +-aab = λ {a} {b} → record { eq→ = ba03 a b ; eq← = case1 } ; x-aab = λ {a} {b} → record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , case1 ax ⟫ } ; +-dist = λ {p} {q} {r} → dist-ord2 {hod p} {hod q} {hod r} ; x-dist = λ {p} {q} {r} → dist-ord {hod p} {hod q} {hod r} ; a+0 = λ {a} → record { eq→ = ba04 (hod a) ; eq← = case1 } ; ax1 = λ {a} → record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , x⊆P a ax ⟫ } ; a+-a1 = λ {a} → record { eq→ = ba06 a ; eq← = ba07 a } ; ax-a0 = λ {a} → record { eq→ = ba08 a ; eq← = λ lt → ⊥-elim (¬x<0 lt) } } } where open PowerP ba00 : (x y : PowerP P ) → (hod x ∪ hod y) ⊆ P ba00 x y (case1 px) = x⊆P x px ba00 x y (case2 py) = x⊆P y py ba01 : (a b c : PowerP P) → {x : Ordinal} → odef (hod a) x ∨ odef (hod b ∪ hod c) x → odef (hod a ∪ hod b) x ∨ odef (hod c) x ba01 a b c {x} (case1 ax) = case1 (case1 ax) ba01 a b c {x} (case2 (case1 bx)) = case1 (case2 bx) ba01 a b c {x} (case2 (case2 cx)) = case2 cx ba02 : (a b c : PowerP P) → {x : Ordinal} → odef (hod a ∪ hod b) x ∨ odef (hod c) x → odef (hod a) x ∨ odef (hod b ∪ hod c) x ba02 a b c {x} (case1 (case1 ax)) = case1 ax ba02 a b c {x} (case1 (case2 bx)) = case2 (case1 bx) ba02 a b c {x} (case2 cx) = case2 (case2 cx) ba03 : (a b : PowerP P) → {x : Ordinal} → odef (hod a) x ∨ odef (hod a ∩ hod b) x → odef (hod a) x ba03 a b (case1 ax) = ax ba03 a b (case2 ab) = proj1 ab ba04 : (a : HOD) → {x : Ordinal} → odef a x ∨ odef od∅ x → odef a x ba04 a (case1 ax) = ax ba04 a (case2 x) = ⊥-elim (¬x<0 x) ba05 : {a b : HOD} {x : Ordinal} → odef a x ∨ odef b x → odef b x ∨ odef a x ba05 (case1 x) = case2 x ba05 (case2 x) = case1 x ba06 : (a : PowerP P ) → { x : Ordinal} → odef (hod a) x ∨ odef (P \ hod a) x → odef P x ba06 a {x} (case1 ax) = x⊆P a ax ba06 a {x} (case2 nax) = proj1 nax ba07 : (a : PowerP P ) → { x : Ordinal} → odef P x → odef (hod a) x ∨ odef (P \ hod a) x ba07 a {x} px with ∋-p (hod a) (x⊆P a) (* x) ... | yes y = case1 (subst (λ k → odef (hod a) k) &iso y) ... | no n = case2 ⟪ px , subst (λ k → ¬ odef (hod a) k) &iso n ⟫ ba08 : (a : PowerP P) → {x : Ordinal} → odef (hod a ∩ (P \ hod a)) x → odef od∅ x ba08 a {x} ⟪ ax , ⟪ px , nax ⟫ ⟫ = ⊥-elim ( nax ax )