{-# OPTIONS --cubical-compatible --safe #-}
module logic where
open import Level
open import Relation.Nullary
open import Relation.Binary hiding (_⇔_ )
open import Data.Empty
data Bool : Set where
true : Bool
false : Bool
record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where
constructor ⟪_,_⟫
field
proj1 : A
proj2 : B
data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where
case1 : A → A ∨ B
case2 : B → A ∨ B
_⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m)
_⇔_ A B = ( A → B ) ∧ ( B → A )
contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A
contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a )
double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A
double-neg A notnot = notnot A
double-neg2 : {n : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A
double-neg2 notnot A = notnot ( double-neg A )
de-morgan : {n : Level } {A B : Set n} → A ∧ B → ¬ ( (¬ A ) ∨ (¬ B ) )
de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and ))
de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and ))
dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B
dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a )
dont-or {A} {B} (case2 b) ¬A = b
dont-orb : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ B → A
dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b )
dont-orb {A} {B} (case1 a) ¬B = a
infixr 130 _∧_
infixr 140 _∨_
infixr 150 _⇔_
_/\_ : Bool → Bool → Bool
true /\ true = true
_ /\ _ = false
_\/_ : Bool → Bool → Bool
false \/ false = false
_ \/ _ = true
not : Bool → Bool
not true = false
not false = true
_<=>_ : Bool → Bool → Bool
true <=> true = true
false <=> false = true
_ <=> _ = false
infixr 130 _\/_
infixr 140 _/\_
open import Relation.Binary.PropositionalEquality
record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where
field
fun← : S → R
fun→ : R → S
fiso← : (x : R) → fun← ( fun→ x ) ≡ x
fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x
injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m)
injection R S f = (x y : R) → f x ≡ f y → x ≡ y
not-not-bool : { b : Bool } → not (not b) ≡ b
not-not-bool {true} = refl
not-not-bool {false} = refl
¬t=f : (t : Bool ) → ¬ ( not t ≡ t)
¬t=f true ()
¬t=f false ()
≡-Bool-func : {A B : Bool } → ( A ≡ true → B ≡ true ) → ( B ≡ true → A ≡ true ) → A ≡ B
≡-Bool-func {true} {true} a→b b→a = refl
≡-Bool-func {false} {true} a→b b→a with b→a refl
... | ()
≡-Bool-func {true} {false} a→b b→a with a→b refl
... | ()
≡-Bool-func {false} {false} a→b b→a = refl
bool-≡-? : (a b : Bool) → Dec ( a ≡ b )
bool-≡-? true true = yes refl
bool-≡-? true false = no (λ ())
bool-≡-? false true = no (λ ())
bool-≡-? false false = yes refl
¬-bool-t : {a : Bool} → ¬ ( a ≡ true ) → a ≡ false
¬-bool-t {true} ne = ⊥-elim ( ne refl )
¬-bool-t {false} ne = refl
¬-bool-f : {a : Bool} → ¬ ( a ≡ false ) → a ≡ true
¬-bool-f {true} ne = refl
¬-bool-f {false} ne = ⊥-elim ( ne refl )
¬-bool : {a : Bool} → a ≡ false → a ≡ true → ⊥
¬-bool refl ()
lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥
lemma-∧-0 {true} {false} ()
lemma-∧-0 {false} {true} ()
lemma-∧-0 {false} {false} ()
lemma-∧-0 {true} {true} eq1 ()
lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥
lemma-∧-1 {true} {false} ()
lemma-∧-1 {false} {true} ()
lemma-∧-1 {false} {false} ()
lemma-∧-1 {true} {true} eq1 ()
bool-and-tt : {a b : Bool} → a ≡ true → b ≡ true → ( a /\ b ) ≡ true
bool-and-tt refl refl = refl
bool-∧→tt-0 : {a b : Bool} → ( a /\ b ) ≡ true → a ≡ true
bool-∧→tt-0 {true} {true} eq = refl
bool-∧→tt-0 {false} {_} ()
bool-∧→tt-1 : {a b : Bool} → ( a /\ b ) ≡ true → b ≡ true
bool-∧→tt-1 {true} {true} eq = refl
bool-∧→tt-1 {true} {false} ()
bool-∧→tt-1 {false} {false} ()
bool-or-1 : {a b : Bool} → a ≡ false → ( a \/ b ) ≡ b
bool-or-1 {false} {true} eq = refl
bool-or-1 {false} {false} eq = refl
bool-or-2 : {a b : Bool} → b ≡ false → (a \/ b ) ≡ a
bool-or-2 {true} {false} eq = refl
bool-or-2 {false} {false} eq = refl
bool-or-3 : {a : Bool} → ( a \/ true ) ≡ true
bool-or-3 {true} = refl
bool-or-3 {false} = refl
bool-or-31 : {a b : Bool} → b ≡ true → ( a \/ b ) ≡ true
bool-or-31 {true} {true} eq = refl
bool-or-31 {false} {true} eq = refl
bool-or-4 : {a : Bool} → ( true \/ a ) ≡ true
bool-or-4 {true} = refl
bool-or-4 {false} = refl
bool-or-41 : {a b : Bool} → a ≡ true → ( a \/ b ) ≡ true
bool-or-41 {true} {b} eq = refl
bool-and-1 : {a b : Bool} → a ≡ false → (a /\ b ) ≡ false
bool-and-1 {false} {b} eq = refl
bool-and-2 : {a b : Bool} → b ≡ false → (a /\ b ) ≡ false
bool-and-2 {true} {false} eq = refl
bool-and-2 {false} {false} eq = refl
bool-and-2 {true} {true} ()
bool-and-2 {false} {true} ()