module logic where

open import Level
open import Relation.Nullary
open import Relation.Binary hiding (_⇔_ )
open import Data.Empty

data Bool : Set where
    true : Bool
    false : Bool

data Two : Set where
   i0 : Two
   i1 : Two

record  _∧_  {n m : Level} (A  : Set n) ( B : Set m ) : Set (n  m) where
   constructor ⟪_,_⟫
   field
      proj1 : A
      proj2 : B

data  _∨_  {n m : Level} (A  : Set n) ( B : Set m ) : Set (n  m) where
   case1 : A  A  B
   case2 : B  A  B

_⇔_ : {n m : Level }  ( A : Set n ) ( B : Set m )   Set (n  m)
_⇔_ A B =  ( A  B )  ( B  A )

∧-exch : {n m : Level} {A  : Set n} { B : Set m }  A  B  B  A
∧-exch p =  _∧_.proj2 p , _∧_.proj1 p 

∨-exch : {n m : Level} {A  : Set n} { B : Set m }  A  B  B  A
∨-exch (case1 x) = case2 x
∨-exch (case2 x) = case1 x

contra-position : {n m : Level } {A : Set n} {B : Set m}  (A  B)  ¬ B  ¬ A
contra-position {n} {m} {A} {B}  f ¬b a = ¬b ( f a )

double-neg : {n  : Level } {A : Set n}  A  ¬ ¬ A
double-neg A notnot = notnot A

double-neg2 : {n  : Level } {A : Set n}  ¬ ¬ ¬ A  ¬ A
double-neg2 notnot A = notnot ( double-neg A )

de-morgan : {n  : Level } {A B : Set n}   A  B   ¬ ( (¬ A )  (¬ B ) )
de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and ))
de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and ))

de-morgan∨ : {n  : Level } {A B : Set n}   A  B   ¬ ( (¬ A )  (¬ B ) )
de-morgan∨ {n} {A} {B} (case1 a) and = ⊥-elim (  _∧_.proj1 and a )
de-morgan∨ {n} {A} {B} (case2 b) and = ⊥-elim (  _∧_.proj2 and b )

dont-or : {n m : Level} {A  : Set n} { B : Set m }   A  B  ¬ A  B
dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a )
dont-or {A} {B} (case2 b) ¬A = b

dont-orb : {n m : Level} {A  : Set n} { B : Set m }   A  B  ¬ B  A
dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b )
dont-orb {A} {B} (case1 a) ¬B = a

infixr  130 _∧_
infixr  140 _∨_
infixr  150 _⇔_

_/\_ : Bool  Bool  Bool 
true /\ true = true
_ /\ _ = false

_\/_ : Bool  Bool  Bool 
false \/ false = false
_ \/ _ = true

not : Bool  Bool 
not true = false
not false = true 

_<=>_ : Bool  Bool  Bool  
true <=> true = true
false <=> false = true
_ <=> _ = false

open import Relation.Binary.PropositionalEquality

not-not-bool : { b : Bool }  not (not b)  b
not-not-bool {true} = refl
not-not-bool {false} = refl

record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m)  where
   field
       fun←  :  S  R
       fun→  :  R  S
       fiso← : (x : R)   fun← ( fun→ x )   x
       fiso→ : (x : S )  fun→ ( fun← x )   x

injection :  {n m : Level} (R : Set n) (S : Set m) (f : R  S )  Set (n Level.⊔ m)
injection R S f = (x y : R)  f x  f y  x  y


¬t=f : (t : Bool )  ¬ ( not t  t) 
¬t=f true ()
¬t=f false ()

infixr  130 _\/_
infixr  140 _/\_

≡-Bool-func : {A B : Bool }  ( A  true  B  true )  ( B  true  A  true )  A  B
≡-Bool-func {true} {true} a→b b→a = refl
≡-Bool-func {false} {true} a→b b→a with b→a refl
... | ()
≡-Bool-func {true} {false} a→b b→a with a→b refl
... | ()
≡-Bool-func {false} {false} a→b b→a = refl

bool-≡-? : (a b : Bool)  Dec ( a  b )
bool-≡-? true true = yes refl
bool-≡-? true false = no  ())
bool-≡-? false true = no  ())
bool-≡-? false false = yes refl

¬-bool-t : {a : Bool}   ¬ ( a  true )  a  false
¬-bool-t {true} ne = ⊥-elim ( ne refl )
¬-bool-t {false} ne = refl

¬-bool-f : {a : Bool}   ¬ ( a  false )  a  true
¬-bool-f {true} ne = refl
¬-bool-f {false} ne = ⊥-elim ( ne refl )

¬-bool : {a : Bool}   a  false   a  true  
¬-bool refl ()

lemma-∧-0 : {a b : Bool}  a /\ b  true  a  false  
lemma-∧-0 {true} {true} refl ()
lemma-∧-0 {true} {false} ()
lemma-∧-0 {false} {true} ()
lemma-∧-0 {false} {false} ()

lemma-∧-1 : {a b : Bool}  a /\ b  true  b  false  
lemma-∧-1 {true} {true} refl ()
lemma-∧-1 {true} {false} ()
lemma-∧-1 {false} {true} ()
lemma-∧-1 {false} {false} ()

bool-and-tt : {a b : Bool}  a  true  b  true  ( a /\ b )  true
bool-and-tt refl refl = refl

bool-∧→tt-0 : {a b : Bool}  ( a /\ b )  true  a  true 
bool-∧→tt-0 {true} {true} refl = refl
bool-∧→tt-0 {false} {_} ()

bool-∧→tt-1 : {a b : Bool}  ( a /\ b )  true  b  true 
bool-∧→tt-1 {true} {true} refl = refl
bool-∧→tt-1 {true} {false} ()
bool-∧→tt-1 {false} {false} ()

bool-or-1 : {a b : Bool}  a  false  ( a \/ b )  b 
bool-or-1 {false} {true} refl = refl
bool-or-1 {false} {false} refl = refl
bool-or-2 : {a b : Bool}  b  false  (a \/ b )  a 
bool-or-2 {true} {false} refl = refl
bool-or-2 {false} {false} refl = refl

bool-or-3 : {a : Bool}  ( a \/ true )  true 
bool-or-3 {true} = refl
bool-or-3 {false} = refl

bool-or-31 : {a b : Bool}  b  true   ( a \/ b )  true 
bool-or-31 {true} {true} refl = refl
bool-or-31 {false} {true} refl = refl

bool-or-4 : {a : Bool}  ( true \/ a )  true 
bool-or-4 {true} = refl
bool-or-4 {false} = refl

bool-or-41 : {a b : Bool}  a  true   ( a \/ b )  true 
bool-or-41 {true} {b} refl = refl

bool-and-1 : {a b : Bool}   a  false  (a /\ b )  false
bool-and-1 {false} {b} refl = refl
bool-and-2 : {a b : Bool}   b  false  (a /\ b )  false
bool-and-2 {true} {false} refl = refl
bool-and-2 {false} {false} refl = refl


open import Data.Nat
open import Data.Nat.Properties

_≥b_ : ( x y : )  Bool
x ≥b y with <-cmp x y
... | tri< a ¬b ¬c = false
... | tri≈ ¬a b ¬c = true
... | tri> ¬a ¬b c = true

_>b_ : ( x y : )  Bool
x >b y with <-cmp x y
... | tri< a ¬b ¬c = false
... | tri≈ ¬a b ¬c = false
... | tri> ¬a ¬b c = true

_≤b_ : ( x y : )  Bool
x ≤b y  = y ≥b x

_<b_ : ( x y : )  Bool
x <b y  = y >b x

open import Relation.Binary.PropositionalEquality

¬i0≡i1 : ¬ ( i0  i1 )
¬i0≡i1 ()

¬i0→i1 : {x : Two}  ¬ (x  i0 )  x  i1 
¬i0→i1 {i0} ne = ⊥-elim ( ne refl )
¬i0→i1 {i1} ne = refl

¬i1→i0 : {x : Two}  ¬ (x  i1 )  x  i0 
¬i1→i0 {i0} ne = refl
¬i1→i0 {i1} ne = ⊥-elim ( ne refl )