Shinji KONO

Category Exercise on Higher order categorical logic

//

These are set of Agda exercise for

Introduction to Higher order categorical logic](https://www.amazon.co.jp/gp/product/0521356539)

Based on Category Library

CCC.agda Cartesian closed category p.52 and Topos p.139

CCCGraph.agda CCC generated from Graph (iconmplete) p.55

CCCSets.agda CCC on Sets and Topos on Sets (not on the book)

CCChom.agda CCC as Hom Isomorphism p.54

CatExponetial.agda Functor Cattegory p.8

Comma.agda Comma category p.27

Comma1.agda Comma category p.27

HomReasoning.agda Reasoning utilities

Polynominal.agda Polynominal Category and functional completeness

S.agda Simple example on Sets Completeness

SetsCompleteness.agda Completeness of Sets

ToposEx.agda Topos Exercise (incomplete) p.141

ToposIL.agda Topos Internal Language (incomplete) p.143

ToposSub.agda Topos Subobject classifier (incomplete)

adj-monad.agda Adjunction implies Monad p.28

applicative.agda Applicative Functor

bi-ccc.agda Bi-cartesian closed category p.65

cat-utility.agda various definitions

category-ex.agda simple ex

code-data.agda simple ex

cokleisli.agda kleisli category on coMonad

comparison-em.agda Elienburg Moore Comparison

comparison-functor.agda kleisli Comparison

em-category.agda Elienburg Moore Resolution

epi.agda epi example

equalizer.agda Equalizer example p.21

free-monoid.agda free monoid

freyd.agda Adjoin Functor Theorem p.26

freyd1.agda

freyd2.agda

graph.agda Category generated by a Graph

idF.agda identit functor

kleisli.agda Kleisli Category

level-ex.agda

limit-to.agda Example related to Limits p.24

list-level.agda

list-monoid-cat.agda

list-nat.agda

list-nat0.agda

list.agda

maybe-monad.agda

maybeCat.agda

monad→monoidal.agda Monad on Sets is a monoidal functor

monoid-monad.agda Monad with Monoid p.28

monoidal.agda Monoidal Functor

negnat.agda

pullback.agda Pullback p.24

record-ex.agda

stdalone-kleisli.agda

system-f.agda

system-t.agda

universal-mapping.agda Universal mapping p.13

yoneda.agda Yoneda Functor p.11